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Abstract 

The use of Amazon’s Mechanical Turk (MTurk) to conduct academic research has steadily grown since its inception 

in 2005. The ability to control every aspect of a study, from sampling to collection, is extremely appealing to 

researchers. Unfortunately, the additional control offered through MTurk can also lead to poor data quality if 

researchers are not careful. Despite research on various aspects of data quality, participant compensation, and 

participant demographics, the academic literature still lacks a practical guide to the effective use of settings and features 

in MTurk for survey and experimental research. Therefore, the purpose of this tutorial is to provide researchers with a 

recommended set of best practices to follow before, during, and after collecting data via MTurk to ensure that 

responses are of the highest possible quality. We also recommend that editors and reviewers place more emphasis on 

the collection methods employed by researchers, rather than assume that all samples collected using a given online 

platform are of equal quality. We also recommend that editors and reviewers place more emphasis on the collection 

methods employed by researchers, rather than assuming that all samples collected using a given online platform are 

of equal quality. 
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1. Introduction

Amazon Mechanical Turk (MTurk), an online crowdsourcing platform, has emerged as an attractive data collection 

method for both survey and experimental research (Buhrmester, Talaifar, & Gosling, 2018). Even though the use of 

MTurk has increased, authors still find themselves forced to defend the quality of data collected on MTurk to reviewers 

and editors. Lowry, D’Arcy, Hammer, and Moody (2016) had this to say on the issue: 

A pattern has taken hold in which traditional organizational researchers, reviewers, and editors are quick to 

misconstrue and reject new methods while defending the “best practices” of paper surveys, which have been 

the methodology of choice for several decades. Although organizations themselves have implemented 

significant innovations, the published research on organizations has not undertaken innovation to the same 

degree. Traditionalists and the researchers who make up the reviewing system in the organization science and 

information systems (IS) fields are quick to downplay the legitimacy of new theories and methods, but they 

fail to apply the same level of scrutiny to their own traditions. This thwarts scientific progress. (Lowry et al., 

2016, p. 233). 

Critiquing the quality of all data during the review process is certainly important. However, we argue that the efficacy 

of MTurk as a research tool, as opposed to more widely accepted online panel services (e.g. Qualtrics, SurveyMonkey, 

Turkprime) or traditional paper surveys, should be judged based upon the qualification methodology employed by the 

researcher rather than the collection media itself (Landers & Behrend, 2015; Roulin, 2015). We argue that the use of all 

online panels, where researchers pay for a study instrument to be administered to a group of prequalified participants, 

reduces the validity and generalizability of behavioral research. The inability to confirm or even fully describe the 

procedures used to develop and validate a given sample is a major disadvantage to the use of these services because it 

forces authors, reviewers, and editors to blindly accept the quality of the panel. Therefore, we argue that sample reliability 

and study generalizability is greatly improved if researchers are required to document how they qualified their subjects 

instead of accepting panels qualified by such services. 

Despite promising research on various aspects of MTurk, such as data quality (Behrend, Sharek, Meade, & Wiebe, 

2011; Buhrmester, Kwang, & Gosling, 2011; Landers & Behrend, 2015; Paolacci, Chandler, & Ipeirotis, 2010; Peer, 

Vosgerau, & Acquisti, 2014; Shapiro, Chandler, & Mueller, 2013; Sprouse, 2011; Steelman, Hammer, & Limayem, 

2014), participant compensation (Chandler, Paolacci, & Mueller, 2013; Deng & Joshi, 2016; Goodman, Cryder, & 

Cheema, 2013; Horton & Chilton, 2010; Kraut et al., 2004; Mason & Suri, 2012; Mason & Watts, 2009) participant 

diversity (Behrend et al., 2011; Buhrmester et al., 2011; Kaufmann & Veit, 2011; Kraut et al., 2004; Mason & Suri, 

2012; Paolacci et al., 2010; Ross, Irani, Silberman, Zaldivar, & Tomlinson, 2010), and successful replications (Berinsky, 

Huber, & Lenz, 2012; Crump, McDonnell, & Gureckis, 2013; Horton, Rand, & Zeckhauser, 2011) the academic literature 

lacks a practical guide to the effective use of MTurk for survey and experimental research. Thus, the purpose of this 

tutorial paper is to provide behavioral researchers with a suggested set of best practices to follow when employing MTurk 

to ensure that future research is based on high-quality data. Due to our specific focus on MTurk, we only mention 

traditional best practices (e.g., Kerlinger & Lee, 2000; Pedhazur & Schmelkin, 1991; Shadish, Cook, & Campbell, 2002) 

when describing how to apply them on MTurk. Therefore, researchers must ensure that proper statistical and 

experimental procedures have been followed when using MTurk, just as they should with any other sampling method. 

Although there are many possible uses for MTurk, we limited our paper to its use in survey and experimental research. 

Our suggested best practices build upon discussions found in prior literature (Cheung, Burns, Sinclair, & Sliter, 2017; 

Jia, Reich, & Jia, 2016; Jia, Steelman, Reich, & Jia, 2017; Lowry et al., 2016) in addition to knowledge gained through 

our personal use of MTurk. Cheung et al. (2017) discuss methodological concerns with MTurk and provide general 

recommendations based on the work of Shadish, Cook, & Campbell (2002). However, they provide little guidance on 

exactly how to address these concerns when using MTurk. Similarly, Jia et al. (2017) provide a table of recommendations 

with brief rationales, but also lack specific instruction on how to follow these recommendations when using MTurk. 

Further, Jia et al. (2017, p. 309) contend that MTurk is only suitable for research that can be “generalized to a variety of 

users and technologies” and samples populations with “diverse individual cognition.” We contend that if authors properly 

follow the best practices we outline in this paper, all types of behavioral research can be conducted on MTurk without 

diminishing data quality, especially when compared to other online sampling methods. 
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Another issue is that due to page limits, authors tend to provide brief explanations of their data collection procedures 

(Lowry et al., 2016). For example, in a study of industrial-organizational psychology journals, approximately one-third 

of the articles did not include any information on quality control measures (Cheung et al., 2017). Because of this, 

determining whether the sampling methodology was adequately implemented and examined during the review process 

is often difficult, regardless of the sampling method employed. Therefore, assessing whether our suggested best practices 

are being followed when collecting data via MTurk is difficult, and evaluating the techniques employed in studies that 

have been rejected and remain unpublished is impossible. 

To address these issues, we discuss specific options and settings available in MTurk to employ best practices. First, 

we provide an overview of MTurk. Second, we propose best practices for working with Workers on MTurk. Third, we 

outline the suggested best practices in this tutorial with respect to phases of the sampling process: before, during, and 

after data collection. We conclude the tutorial by providing recommendations for authors, editors, and reviewers to aid 

in the assessment and reporting of data quality and collection procedures when using MTurk. We also compare and 

contrast our recommendations with those of Cheung et al. (2017), Jia et al. (2017), and Lowry et al. (2016) throughout 

our paper. We have provided appendices to help researchers outline the expectations and instructions to participants of 

studies conducted using MTurk. 

2. Overview of Amazon Mechanical Turk

Crowdsourcing has been defined as “the paid recruitment of an online, independent global workforce for the objective 

of working on a specifically defined task or set of tasks” (Behrend et al., 2011, p. 801). Amazon Mechanical Turk is a 

crowdsourcing platform that serves as an online marketplace for individuals and businesses, referred to as Requesters, 

to hire independent contractors, referred to as Workers, to remotely perform a wide variety of jobs, referred to as Human 

Intelligence Tasks (HITs). Requesters choose the payment amount and participant qualifications. Requesters review work 

and determine if it should be accepted or rejected, or if a bonus payment is appropriate. Workers’ reputations are indicated 

by their HIT acceptance rate, while Requesters’ reputations are based on opinions shared by Workers on external 

websites. Behavioral researchers are most likely to use MTurk to solicit participants for surveys and experiments, and 

then conduct the study on other online research platforms, such as Qualtrics or SurveyMonkey. For an excellent 

introduction to MTurk and its uses in behavioral research, see Mason & Suri (2012). 

2.1. Benefits of MTurk 

Although Amazon does not reveal user information, several studies have reported on the characteristics of Workers 

and Requesters. Ipeirotis (2010b) determined that when compared to Internet users in general, Workers tend to be 

younger, mainly female, and have less income. It is estimated that there are currently over 100,000 users on MTurk, with 

at least 2,000 actives at any given time (Difallah, Filatova, & Ipeirotis, 2018). Demographic data for certain date ranges 

can also be obtained from Mechanical Turk Tracker (http://mturk-tracker.com) (Difallah, Catasta, Demartini, Ipeirotis, 

& Cudré-Mauroux, 2015; Ipeirotis, 2010a). As shown in Table 1, several studies have identified numerous benefits of 

using MTurk over other primary data sources. Further, MTurk is particularly useful in behavioral research (Behrend et 

al., 2011; Goodman et al., 2013), allowing surveys and experiments to be conducted online without sacrificing quality 

(Briones & Benham, 2017; Mason & Watts, 2009; Rogstadius et al., 2011; Sprouse, 2011). While Goodman et al. (2013) 

hypothesized that MTurk participants might disregard instructions if it is likely to lead to a higher payment, the study 

found that cheating was significantly reduced from 40.1 to 27.2 percent simply by asking MTurk participants to answer 

honestly. 

Ultimately, MTurk provides researchers with greater control and flexibility at less expense than other online panel 

providers. MTurk’s pricing is far more transparent in that Amazon’s base fee is a percentage of the amount paid directly 

to Worker(s) for completing a HIT (20 percent for batches with fewer than ten assignments and 40 percent for batches 

with ten or more assignments) (Amazon Mechanical Turk, n.d.-b), where an assignment is referring to one completion 

of the HIT. Other online panel providers typically charge researchers a flat fee per respondent. Unfortunately, pricing 

using the flat fee approach is indicative of the challenge in obtaining a sample of the desired population rather than the 

actual payment made to each respondent, which obfuscates the sampling methodology. For example, researchers might 

be quoted a cost of $50 per respondent to sample a niche target population with a short 10-minute survey, yet only $5 of 

that fee is paid to each respondent. The remaining $45 cost is incurred by the online panel provider in the recruitment 

and identification of the sample. Understandably, the online panel services do not want to reveal their internal cost 

structure, but the inability of researchers to report the true amount paid to respondents or the sample recruitment 

procedure used by the online panel service is problematic. 
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Category References 

Cost 
Chandler et al., 2013; Goodman et al., 2013; Horton & Chilton, 2010; 

Kraut et al., 2004; Mason & Suri, 2012; Mason & Watts, 2009 

Subject Pool Access 

Behrend et al., 2011; Chandler et al., 2013; Goodman et al., 2013; 

Kraut et al., 2004; Lowry et al., 2016; Mason & Suri, 2012;  

Mason & Watts, 2009; Shapiro et al., 2013; Stewart et al., 2015 

Subject Pool Diversity 

Behrend et al., 2011; Buhrmester et al., 2011; Difallah et al., 2018; 

Kaufmann & Veit, 2011; Kraut et al., 2004; Lowry et al., 2016;  

Mason & Suri, 2012; Paolacci et al., 2010; Ross et al., 2010 

Speed 
Chandler et al., 2013; Goodman et al., 2013; Horton & Chilton, 2010; 

Lowry et al., 2016; Mason & Watts, 2009 

Flexibility Chandler et al., 2013; Kraut et al., 2004; Lowry et al., 2016; Mason & Watts, 2009 

Attentiveness Hauser & Schwarz, 2016 

Anonymity Chandler et al., 2013; Shapiro et al., 2013 

Table 1. Advantages of using MTurk 

2.2. Common Criticisms of MTurk 

Some of the common criticisms of MTurk revolve around data verification, self-selection bias, and its appropriateness 

for sampling certain target populations. While all researchers should strive for perfect generalizability and validity, every 

study has its limitations. We contend that the control that researchers have when qualifying participants on MTurk is a 

substantial advantage over other online sampling methods. 

Some of the benefits of online research might also negatively affect studies conducted using MTurk. For example, 

anonymity can certainly be beneficial to participants and reduce social desirability bias, but complete anonymity prevents 

researchers from verifying self-reported data (Cheung et al., 2017; Jia et al., 2017). Encouragingly, Rand (2012) found 

that most subjects answered reliably to demographic questions on MTurk. Unfortunately, one of the common 

misconceptions of MTurk is Workers falsely claiming to be residents of the United States (Jia et al., 2017). Previously, 

citizens of the United States were only required to provide either a social security number or an individual tax 

identification number upon reaching a certain level of earnings and international Workers were unable to perform any 

HITs without providing the necessary information found on IRS Form W-8BEN. Now, Amazon requires all Workers to 

provide valid taxpayer identification information when registering with Amazon Payments before they are permitted to 

complete a single HIT. This is explained in the frequently asked questions related to tax information on MTurk. Under 

“Tax Information for US Residents”, the answer to “Why am I asked to register with Amazon Payments?” states: 

An Amazon Payments account allows you to transfer Amazon Mechanical Turk earnings to your bank account. 

We also require U.S. Workers to provide valid taxpayer identification information when registering with 

Amazon Payments. You must create an Amazon Payments account to work on HITs and your earnings may be 

subject to tax reporting with the Internal Revenue Service (IRS). To learn more, click here. (Amazon 

Mechanical Turk, n.d.-c) 

Under “Tax Information for Non-US Residents”, the answer to “Why am I asked to provide my tax information?” 

states: 

We require Workers to provide valid taxpayer identification information in order to comply with U.S. tax 

reporting regulations governed by the U.S. tax authority (Internal Revenue Service or "IRS"). The tax 

information interview collects the information needed to complete an IRS tax form (e.g. IRS Form W-8) which 

will be used to certify your non-U.S. status, determine if your earnings are subject to IRS reporting, and the 

rate of U.S. tax withholding (if any) applicable to your earnings. (Amazon Mechanical Turk, n.d.-c) 

Amazon’s increased scrutiny for all new Worker accounts to address early issues with work performed by 

international participants might lead to a less diverse subject pool for studies requiring an international sample, but they 

have addressed much of the early criticism of MTurk with respect to sampling populations located in the United States. 

Concerns have also been raised regarding self-selection bias (Cheung et al., 2017; Jia et al., 2017). We agree in the 

sense that there is no way to compel people to participate since everyone has autonomy. Yet, reduced verifiability and 
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self-selection bias are potential issues true of all online samples and not limited to MTurk. Self-selection by ineligible 

participants can be mitigated by following our suggested best practices. Since these concerns exist for all online panels, 

we argue that if other platforms that provide far less control are considered acceptable, a study properly conducted on 

MTurk should be, as well. Jia et al. (2017) also discuss when MTurk samples or organizational samples are appropriate. 

We feel that MTurk has wider applications than what they suggest. We agree that when the topic of interest is narrow 

and specific to an organization, then an organizational sample is necessary. However, MTurk’s extensive pool of 

potential participants and researcher control make it more advantageous than traditional sampling methods for studies 

intended to be generalizable to the population at large. 

2.3. Dangers of Naïve Use of MTurk 

The attractive benefits of MTurk introduce additional burdens that researchers must properly address to collect quality 

data. Due to its short existence and the relative ease of publishing HITs, researchers with little to no experience with 

MTurk might be unaware of potential data quality issues and how to mitigate them prior to data collection. In the 

following sections, we outline our suggested practices for maintaining a healthy relationship with Workers, as well as 

methods researchers should employ before, during, and after data collection on MTurk to ensure collection of the highest 

quality data possible. The ordering of the suggested practices is intended to follow the stages in the research process as 

best possible, though researchers should be aware that some of the practices can and should apply to multiple aspects of 

study design, data collection, and analysis. Therefore, we highly encourage readers to fully read and understand all the 

best practices before collecting data on MTurk. 

3. Best Practices for Working with Workers

In addition to ensuring data quality, it is critical for researchers to maintain a symbiotic relationship with participants. 

Treating workers with respect and dignity preserves MTurk and other platforms as acceptable sources of participants for 

conducting research. Gleibs (2017) reminded researchers of the importance of maintaining ethical treatment while using 

crowdsourcing services. The best practices suggested in this section, summarized in Table 2, can help researchers 

maintain this vital relationship when utilizing MTurk. 

Number Best Practice How to Implement 

3.1 Protect Study Integrity and Reputation 
• Be aware of your reputation

• Resolve any issues quickly

3.2 Provide Clear Expectations and Instructions 

• State expectations regarding attentiveness, time

commitment, and compensation

• Include any study-specific restrictions that you

expect Workers to follow

3.3 Provide Contact Information 

• Provide Workers with an email address that will

be monitored during data collection

• Allow Workers to provide feedback after

completing the study

3.4 Be Fair and Consistent 

• Set payment at or above minimum wage

• Establish an objective rubric for submissions

• Include a statement in the HIT description of

how work will be assessed

3.5 Maintain Worker Confidentiality and Anonymity 
• Protect participant information

• Only collect anonymous MTurk Worker IDs

Table 2. Best Practices for Working with Workers 

3.1. Protect Study Integrity & Reputation 

We believe that effective use of MTurk requires obtaining accounts on multiple websites to protect the integrity of 

studies, as well as one’s own reputation among MTurk Workers (Mason & Suri, 2012; Paolacci et al., 2010). In this 

section, we discuss their benefits and the best practices to follow when using these additional accounts. 

Workers, who commonly refer to themselves as “Turkers,” often post reviews of Requesters on MTurk review 

websites, such as Turkopticon (http://turkopticon.ucsd.edu/) and Turker Nation (http://www.turkernation.com) (Cheung 
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et al., 2017; Jia et al., 2017; Mason & Suri, 2012). The use of these outlets might result in study-specific information, 

such as the location and answers to attention and manipulation checks, being shared with potential study participants, 

possibly invalidating the results of the study. Chandler, Mueller, & Paolacci (2014) concluded that cross-talk about study 

content among Workers was not a major problem. However, prohibiting participants from discussing the study on public 

forums and monitoring these websites during collection is still important to ensure that such disclosures have not 

compromised the integrity of the study. 

The first version of Turkopticon (https://turkopticon.ucsd.edu) allows Workers to rate a Requester’s 

“communicativity,” “generosity,” “fairness” and “promptness” on a scale of one to five, as well as submit detailed 

comments about their participation in a given HIT. The beta version of Turkopticon 2 (https://turkopticon.info/) has been 

modified to focus ratings on individual HITs rather than aggregate all ratings for each Requester. The rating criteria has 

also evolved to include items related to terms of service violations, technical issues, completion time, approval/rejection 

time, and whether the Worker would recommend the HIT to others. The HIT review form of Turkopticon 2 can be seen 

in Figure 1. 

Figure 1. Turkopticon 2 HIT Review Form 

In addition to the Turkopticon websites, Requester reputation ratings are readily available to potential Workers who 

are using Internet browser plugins or have manually installed scripts (https://turkopticon.info/install). If the plugin or 

script is installed, Workers can quickly gain insight on the Requester’s reputation in the Turkopticon community while 
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browsing available HITs on MTurk. This information is provided by a pop-up box that can be accessed simply by 

hovering the mouse cursor over the small icon inserted in front of the Requester’s name for each HIT. A side-by-side 

comparison of Requester ratings as seen on MTurk using browser scripts for the original Turkopticon and beta version 

of Turkopticon 2 is provided in Figure 2. 

Figure 2. Comparison of Old and New Turkopticon Ratings as Viewed on MTurk 

Requesters (based upon the original Turkopitcon) and HITs (based upon Turkopticon 2) with a poor reputation among 

Workers might struggle to attract study participants, and those who do elect to participate might not provide reliable 

data. Therefore, Requesters should be aware of their reputation and strive to resolve any issues Workers might have as 

reasonably and swiftly as possible. Reviewing valuable feedback from Workers can also help researchers improve future 

HITs and their standing in the MTurk community. For those who discover that they have poor reputations on these 

services, we recommend following our best practices under a new Requester account. This will provide a clean slate and 

allow the researcher to build a positive reputation over time. Aside from that, we do not encourage researchers to create 

new accounts unless compelling justifications can be given. The goal of this paper is for researchers to adopt best 

practices so MTurk will remain a mutually beneficial research platform. Repeatedly creating new accounts to avoid 

maintaining a poor Requester reputation is unethical and counter to the spirit of our recommendations. 

3.2. Provide Clear Expectations and Instructions 

Researchers should ensure that they have provided detailed expectations in the HIT description for potential 

participants to review on MTurk. They should also be upfront about compensation and time required (Paolacci et al., 

2010) and notify participants that they will be removed for inattentiveness (Jia et al., 2017). Some have suggested that 

stating the scientific importance of a study might reduce participant inattentiveness (Fleischer, Mead, & Huang, 2015; 

Goodman et al., 2013). However, researchers should make sure that study instructions do not invalidate responses by 

priming participants (Cheung et al., 2017). Further, restating these expectations again on the research platform being 

used prior to the participants’ commencement of the study is always wise. 

Despite the fact that MTurk Workers conduct their work in an unsupervised and uncontrolled environment, research 

has shown that Workers will respond to specific instructions that restrict certain behavior, such as looking up answers 

on the Internet (Goodman et al., 2013). Cheung et al. (2017) advise asking participants to reduce extraneous factors by 

using a certain Web browser or finding a quiet place to complete the task. Providing clear directions for acceptance is 

also important because there are many tasks on MTurk where priming is not a concern. For example, approximately 13% 

of submitted HITs are returned, giving Workers an opportunity to improve their work and have it accepted (Hara et al., 

2018). However, resubmitting work is not an option for surveys and experiments since it would invalidate the results. 

Therefore, we suggest that researchers clearly outline the expectations and instructions for participants to improve the 

likelihood of achieving acceptable results. We have provided recommended language in Appendices A and B. We have 

also provided a supplementary file that includes alternate code to use for the HIT expectations on MTurk which prevents 

access to the study link until the HIT has been accepted, as shown in Appendix C.  

3.3. Provide Contact Information 

Providing direct contact information to potential participants prior to the commencement of a study is always a good 

practice and likely required by institutional review boards (IRBs). This should be done within the HIT instructions. 

Providing Workers with an email address that is associated with an institution or research organization is likely to 

increase the study’s legitimacy. As we discuss in more detail below, researchers should also be available during the data 
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collection process, because some Workers will email the researchers directly with questions, concerns, or to report 

technical issues. Also, email clients might filter messages sent to Requesters via the MTurk messaging system into spam 

folders. Therefore, researchers should be sure to monitor the email address associated with their MTurk Requester 

account during the data collection process and resolve any issues as quickly as possible. We also recommend that 

researchers include open-response questions for Workers to provide HIT-related feedback within the study instrument 

(Mason & Suri, 2012). Such feedback often pertains to confusing directions and issues experienced with the functionality 

of the instrument. 

3.4. Be Fair and Consistent 

Offering compensation relative to the task length for a given HIT has been shown to impact participation from MTurk 

Workers and reasonable compensation can be expected to yield quality data (Buhrmester et al., 2011). Although some 

MTurk Workers will accept HITs for little compensation, and Requesters are not bound by minimum wage laws since 

Workers are considered independent contractors, this is considered poor practice on ethical grounds. Additionally, low 

compensation is likely to increase data collection time and can negatively impact Requester reputation (Mason & Suri, 

2012). Thus, researchers should ensure that they fairly compensate Workers for the time spent participating in the study 

(Jia et al., 2017; Lowry et al., 2016). At a minimum, we suggest that compensation be set at or above the hourly minimum 

wage in relation to the anticipated length of time to complete the HIT. Since some participants will take longer than 

others, we recommend that the minimum rate be based upon the completion time for the 75th percentile from a pilot 

study. For example, based upon the current minimum wage in the United States of $7.25, a survey expected to take most 

participants approximately 20 minutes to complete (i.e., based upon completion times obtained during pilot testing) 

should pay participants approximately $2.50. This is not only ethical but has also been shown to be a factor for participant 

motivation (Deng & Joshi, 2016; Kaufmann & Veit, 2011) and can result in improved data quality (Buhrmester et al., 

2011). 

The most effective metric for determining Worker quality is the HIT acceptance rate. Fairness and consistency when 

approving and rejecting submitted work for HITs are critical. Adhering to community norms when rejecting work and 

explaining why the work was rejected is also important (Paolacci et al., 2010). Approving all submissions without 

assessing work quality increases data collection costs and reduces the effectiveness of the metric for other Requesters, 

whereas rejecting every instance of questionable work is likely to reduce the Researcher’s reputation among Workers. 

Therefore, researchers must take reasonable steps to maintain a delicate balance between approval and rejection that is 

appropriate for the interests of both parties.  

Since the HIT acceptance rate is critical to assessing Worker quality and the rejection of work often results in negative 

Requester reviews, we recommend that researchers be proactive by establishing clear criteria for reviewing work prior 

to publishing a HIT on MTurk. Our suggested approach is for researchers to establish an objective rubric for poor, 

marginal, acceptable, and excellent submissions based upon the requirements and expectations for the study in question. 

Researchers can then assess the standards for a given study by collecting pilot batches. 

Once the quality of a submission has been determined, we recommend that researchers refer to the matrix provided 

in Table 3 to determine whether to accept the work, whether to provide a bonus to the Worker, as well as whether 

additional communication with the Worker is warranted. Doing so will allow for a more objective and efficient work 

approval process. 

Work Quality Accept Work? Provide Bonus? Send Message? 

Poor No No Yes 

Marginal No Yes Yes 

Acceptable Yes No No 

Excellent Yes Yes Yes 

Table 3. Work Approval Matrix 

Poor data would consist of submissions that clearly indicate the Worker did not put forth an honest attempt. For 

example, providing the same response for every question in a 100-item survey indicates insufficient effort. In such cases, 

researchers should reject the work and send Workers an explanation for why their work was rejected. We believe that 

this is the best way for researchers to preserve their Requester reputation, while also maintaining the integrity of the HIT 

acceptance rate. However, if the work involves completing a survey or participating in an experiment, we recommend 

that these explanations be given in general terms to protect the integrity of the study. 
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Marginal data consists of submissions that appear to be honest attempts yet fail to meet the stated expectations for 

acceptable work. For example, submissions that fail an unacceptable number of attention check questions would be 

considered marginal. Researchers should pay special attention to how they handle poor to marginal submissions. Our 

suggested approach for marginal submissions is to reject the work, provide the Worker with a detailed explanation 

outlining the reason(s) for doing so, and provide a bonus payment to compensate the Worker for taking the time to 

participate in the study. Ideally, we recommend that researchers provide a bonus amount equivalent to accepted work to 

Workers who spent the expected amount of time participating in the study. The use of a bonus payment simply serves as 

compensation for time spent producing work of marginal quality, while also preserving the integrity of the HIT 

acceptance rate as a measure of Worker quality. This might appear to reward Workers for rejected work, but qualitative 

responses from Workers have indicated that they would prefer to preserve a high acceptance rate rather than receive a 

monetary bonus since poor acceptance rates limit the HIT opportunities available to them in the future. 

Obviously, researchers should accept data that meet the criteria for acceptable and excellent submissions. However, 

if possible, we suggest that work that meets the criteria for excellent submissions also be rewarded with additional 

compensation through bonus payments. In addition to meeting the standard for acceptable work, an excellent submission 

might also include extensive qualitative information related to the study’s context or feedback on the behavior of the 

study instrument. Sending a message that thanks them for their excellent submission and the use of a bonus payment 

provides positive reinforcement to the Worker and shows that the researchers appreciate the Worker’s thoughtful 

participation in the study. These small gestures help preserve the number of quality respondents available to participate 

in future research conducted on MTurk. 

Researchers would be wise to include a statement in the HIT description of how they will assess work. For example, 

the following statements would explain the suggested method: “We will review work within [X] hours. Honest, attentive, 

and complete responses will be accepted. Your work will be rejected if it does not satisfy our quality standards. If your 

work is rejected, you will be compensated for your time through a bonus payment.” This informs potential participants 

that Workers who submit honest attempts will always be compensated for their time. Adopting these suggested practices 

will help researchers protect their reputation among Workers while also maintaining the HIT acceptance rate as a reliable 

measure of Worker quality. 

3.5. Maintain Worker Confidentiality and Anonymity 

Before granting approval for a proposed study, IRBs often require assurances from researchers that they will maintain 

participant confidentiality and/or anonymity. Even though Amazon prohibits Requesters from requesting personally 

identifiable information and MTurk Workers benefit from several features designed to protect their identities (Amazon 

Mechanical Turk, n.d.-c), such as anonymized Worker IDs, instances might occur where a Worker reveals their identity 

to the researcher. 

Though unlikely to affect most researchers, Requesters should also be aware of the potential tax implications of data 

collection on MTurk. If a Requester pays an individual Worker more than $600 in a fiscal year, the U.S. Internal Revenue 

Service (IRS) requires the Requester to send the Worker a 1099-MISC form for tax purposes. When necessary, Amazon 

will provide Requesters with Worker information, such as name, Social Security number, and address to satisfy this 

requirement. The potential for Requestors to receive such sensitive personal information only increases the importance 

of maintaining Worker confidentiality. 

A more likely disclosure occurs when an MTurk Worker communicates with a Requester via email (Mason & Suri, 

2012). Workers will often use personal email accounts to ask questions, raise concerns, or dispute the rejection of 

submitted work. Such communication is highly likely to include the Worker’s MTurk ID. Hence, researchers must take 

their responsibility to protect participant information seriously and prevent any knowledge of identifiable participants 

from influencing how they conduct or analyze the data from the study. 

Jia et al. (2017) recommend the collection of IP addresses when conducting external HITs. We disagree with this 

practice for multiple reasons. First, collecting IP addresses has the potential to identify Workers. Second, the use of 

proxies, such as a virtual private network (VPN) or the Tor anonymity network, reduces the reliability of IP addresses 

as an indicator of a user’s physical location. Third, legitimate Workers might share the same IP address, which further 

decreases its usefulness in screening participants. Jia et al. (2017) also suggest including additional qualitative questions 

with the intent to establish Worker identity while simultaneously mentioning in a footnote that requesting or collecting 

personally identifiable information is against Amazon’s terms of service. Not only does this violate Amazon’s policies, 

it is also likely to violate IRB guidelines. Any effort to reduce Worker anonymity is unethical and will likely result in 

negative Requester reputation for the researcher since review sites now prompt Workers to report violations of MTurk’s 
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terms of service (see Figure 1). Additionally, the anonymity that MTurk provides Workers should be viewed as an 

advantage because anonymous participants are less likely to succumb to social desirability bias. Therefore, we highly 

discourage researchers from collecting or requesting any such information. 

4. Best Practices Before Collection

Regardless of the participant recruitment method employed, researchers must carefully plan their studies. However, 

this is especially true for data collected on MTurk due to the freedom and flexibility it provides. The best practices 

suggested in this section, summarized in Table 4, help researchers establish proper methods for soliciting, identifying, 

and collecting high-quality respondents from the desired population when using MTurk. 

Number Best Practice How to Implement 

4.1 Create & Secure Amazon Accounts 

• Create accounts for MTurk and AWS

• Enable two-step verification

• Adopt a generic Requester name

• Use unique email addresses for each account

4.2 Create a Qualification Test 

• Create custom MTurk Qualification Types

• Ask study-specific qualification questions

• Broadly state HIT title, instructions, and

qualification test items

• Set the HIT visibility to private

4.3 Filter Workers 

• Restrict access using MTurk features

• Require no greater than a 97 percent HIT

approval rate

• Consider limiting the number of HITs approved

4.4 Generate Unique Completion Codes 
• Randomly generate and assign a unique

completion code to each respondent

4.5 Test Your HITs 

• Use the MTurk Developer Sandbox

• Collect a pilot batch before the full collection

• Include qualitative questions to identify issues

Table 4. Best Practices Before Collection 

4.1. Create & Secure Accounts 

We suspect that many researchers new to MTurk already have personal Amazon.com accounts they use to purchase 

goods and services online. Nevertheless, we recommend that researchers create separate accounts on Amazon when 

conducting research on MTurk for a few reasons. First, proper account security includes using unique logins for each 

account. If one account is compromised, access to additional accounts will not be affected. Given the sensitive nature of 

academic research and the assurances of anonymity and confidentiality given to participants, researchers should also 

enable two-step verification, which is available in the Advanced Security Settings under Login & Security. Second, we 

advise that researchers adopt a generic Requester name. Using a personal Amazon account on MTurk can result in the 

researcher’s name being revealed as the Requester for each HIT. While we do encourage researchers to share identifiable 

contact information with participants, disclosing such information can be done within the HIT instructions rather than 

Requester name. Third, when creating separate Amazon accounts for research purposes, we suggest that researchers use 

unique, non-work email addresses. If/when a researcher changes employer, they run the risk of losing access to their 

Requester account since Amazon’s only method of contact and verification for MTurk Requesters is the email address 

associated with the account. This would be especially unfortunate for researchers with positive Requester reputation 

ratings. 

While a standard Amazon.com account is all that is needed to access MTurk, we also recommend creating an Amazon 

Web Services (AWS) account (https://aws.amazon.com) to access the advanced features available through MTurk 

Developer Tools (https://requester.mturk.com/developer). Leveraging the capabilities of the MTurk Developer Tools 

and the associated Application Programming Interface (API) allows researchers to create Qualification Tests and to test 

the functionality of their HITs prior to collecting data. Amazon provides a helpful chart, which has been reproduced in 

Table 5 and outlines the other major benefits of using the command line tools and API as opposed to the standard web 
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interface. The Developer Tools require that the Requester’s account be linked with an AWS account. Doing so allows 

the Requester to register for the MTurk Developer Sandbox and download the AWS Software Development Kit (SDK). 

Creating and Managing Your Work 
Web 

Interface 

Command 

Line Tools 
API 

Start with our sample HTML templates ✓

Create HITs visually with an HTML editor ✓

Create and manage your HITs in batches ✓ ✓

Manage HITs created via the CLT or API ✓ ✓

Define HITs in XML ✓ ✓

Host HITs on your own server ✓ ✓

Can be integrated into back-end systems ✓

Create notifications indicating when HITs are updated ✓

Managing the Workforce 
Web 

Interface 

Command 

Line Tools 
API 

View Worker Approval Rate on your HITs ✓

Create custom Qualifications ✓ ✓ ✓

Assign a Worker a Qualification ✓ ✓ ✓

Revoke a Worker's Qualification ✓ ✓ ✓

Use system Qualifications with your HITs up to 5 up to 10 up to 10 

Use custom Qualifications up to 5 up to 10 up to 10 

Block Worker from submitting future HITs ✓ ✓ ✓

Remove a block from a Worker ✓ ✓ ✓

Give a Worker a bonus ✓ ✓ ✓

Email a Worker ✓

Table 5. Tool Comparison Table (reproduced from Amazon Mechanical Turk, 2018) 

4.2. Create a Qualification Test 

There are a few different approaches to qualifying Workers for HITs. Requesters can create a separate HIT for a 

qualification survey, include qualification questions at the beginning of a study, or use custom Qualification Types. We 

do not recommend creating a separate HIT for qualifying participants unless the study’s budget allows for offering a 

higher than usual payment for a longer qualification survey. Workers tend to set alerts and sort the available HITs by the 

reward amount. Since most qualification surveys are likely to be short and low paying, these HITs will be buried at the 

bottom of the list and result in a slower qualification process. We also do not recommend including qualification 

questions in the research instrument itself. This is likely to frustrate Workers who fail to meet the desired qualifications 

after beginning a HIT since it might be perceived as a “bait-and-switch” tactic. 

Instead, we recommend the use of custom MTurk Qualification Types. This allows Requesters to limit the availability 

of a costlier and time-consuming HIT to only those who meet the desired criteria. This can be achieved prior to full-scale 

data collection by limiting the HIT only to Workers who have successfully obtained a custom Qualification Type. One 

of the major advantages of custom Qualification Types is that there are no fees paid to Workers who attempt to qualify. 

Workers only earn compensation after successfully qualifying and having their work accepted for the HIT. Since a high 

paying HIT can attract many potential participants, using custom Qualification Types is a highly cost-effective method 

of qualifying participants for targeted samples. However, since Requesters do not incur fees when using the custom 

Qualification Type method, we encourage researchers to be mindful of the Workers’ time by limiting the length of the 

qualification and only including items or tasks that are necessary for determining eligibility. Abusing the Qualification 

Type to avoid paying Workers is highly unethical and might result in the Requester’s account being terminated by 

Amazon. 
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When developing a Qualification Test, researchers should carefully consider qualification requirements and make 

sure the sample characteristics are as close to the target population as possible (Cheung et al., 2017; Lowry et al., 2016). 

Cheung et al., (2017, pg. 357) suggest including “questions that would only be answered affirmatively by someone who 

had the desired characteristics, such as their job title, work schedule, and salary.” We discourage aggressive attempts to 

verify the employment status of Workers as it would violate their anonymity. However, we agree that ability can be 

assessed by having participants demonstrate that they have the requisite knowledge, skills, and abilities of the desired 

population. 

Ensuring that the HIT title, instructions, and qualification test items are broadly stated is important so that Workers 

are not influenced to answer dishonestly simply to meet the desired target population characteristics. Signals that would 

reveal to participants the purpose of the study or eligibility requirements should be avoided (Cheung et al., 2017) and 

neutral wording can also help alleviate social desirability bias (Jia et al., 2017). For example, if a study calls for a sample 

of full-time employees who hold management positions at publicly traded firms in the United States, Workers might be 

asked to answer: 1) Please indicate your current employment status [35 hours a week or more; Less than 35 hours a 

week; I am not currently employed]; 2) Which of the following most closely matches your position in the organization? 

[intern; entry level; manager; owner]; 3) Please indicate whether your firm is privately owned or publicly traded 

[privately owned; publicly traded; not applicable]; 4) Which of the following best describes the organization of your 

employer? [for-profit; not-for-profit; government; other]. Based upon these example survey items, one could program 

the Qualification Test to automatically grant the custom Qualification Type to Workers who report working 35 hours or 

more in a management position for a publicly traded, for-profit organization. 

Researchers can use Amazon’s MTurk Developer Tools to create and manage custom Qualification Types. The Quiz 

Qualification method allows for automatic approval of Workers that meet the specified criteria, permitting qualified 

Workers to participate in the study immediately. Chandler, Mueller, and Paolacci (2014) provide detailed instructions 

on how to assign qualifications using command line tools or the web interface. Qualification surveys can also be used to 

ask subjects if they would like to be contacted about future studies (Mason & Suri, 2012) in order to form a pool of 

Worker IDs for further research (Chandler et al., 2014). If researchers are planning to conduct multiple studies that 

require different target populations, the relevant qualification questions can be combined into a single survey HIT. The 

data can then be used to generate multiple MTurk Qualifications. However, this should be done as a standalone HIT with 

appropriate compensation provided.  

Lastly, if a Custom Qualification Test is being used, we also suggest setting the HIT Visibility to private, which is in 

the Worker Requirements section of the HIT properties. This allows the HIT to be visible to all Workers, but only those 

who have successfully obtained the custom Qualification can preview the HIT. Those who have not yet qualified will be 

provided a link to the Qualification Test. 

4.3. Filter Workers 

Generalizability and the ability to achieve reliable statistical inference is a primary concern in academic research. One 

of the most critical steps before collecting data is ensuring that the methods used will result in a representative sample 

drawn from the target population. In addition to custom Qualification Types, MTurk also provides several features that 

researchers can use to filter the number of eligible respondents, such as the master qualification, premium qualifications, 

HIT acceptance rate, Worker location, and number of HITs accepted. 

MTurk offers Requesters the ability to restrict acceptance of HITs to MTurk “Masters”, who are Workers deemed by 

Amazon to be high-quality participants. However, there are a few drawbacks to the use of Masters. First, the process for 

attaining Master status is not transparent, forcing Requesters to blindly accept Amazon’s judgment of Worker quality. 

Second, the use of Masters increases the cost of data collection by an additional five percent. Third, the pool of MTurk 

Masters is highly unlikely to be representative of the target populations for most research. We do not recommend using 

Masters unless convincing justification can be given. 

MTurk introduced Premium Qualifications in 2016 (Amazon Mechanical Turk, 2016). Premium Qualifications are 

an attempt to categorize Workers based on regularly-sought criteria instead of forcing Requesters to include additional 

qualification questions into each HIT. For an additional fee, ranging from $0.05 to $1.00 per assignment, Requesters can 

filter the pool of Workers by the predefined list of over 130 Premium Qualifications, such as gender, industry, 

employment status, and job function. While the idea behind Premium Qualifications is attractive, especially to those 

publishing HITs that do not require accurate samples of certain populations, we discourage academic researchers from 

using this feature for a couple of reasons. First, just as with other online panel services, researchers cannot verify the 

methodology employed by MTurk. Although we recognize that the introduction of Premium Qualifications is likely to 
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reduce the chances of Workers changing their reported characteristics from HIT to HIT, we recommend that Requesters 

perform their own Qualifications to maintain control and transparency. Second, since there is no additional cost for 

researchers to create a custom Qualification Test to assign custom Qualification Types to Workers, the surcharge for 

Premium Qualifications makes this feature less appealing. 

Requesters can set eligibility criteria for each HIT using MTurk’s built-in features for filtering participants, such as 

location and approval rate. Since Amazon has strengthened the standard location field for MTurk’s Workers by forcing 

the disclosure of tax information, it can now be used reliably. This can be selected under the “Advanced” tab when 

setting up a HIT on MTurk by choosing to “Customize Worker Requirements”, as shown in Figure 3. Requesters can 

then set the Worker’s location as a qualification filter, allowing or restricting Workers based upon the region(s) selected. 

Figure 3. Location Worker Requirement 

The reputation of MTurk Workers has been found to be an accurate predictor of Worker quality and successful 

completion of attention check questions (Peer et al., 2014). Cheung et al. (2017) and Jia et al. (2017) also mention the 

usefulness of Worker reputation. By using these filters, Requesters can be sure that Workers have achieved a desired 

Worker HIT approval rate and have had an acceptable number of HITs approved. Amazon suggests requiring Workers 

to have at least a 95 percent approval rate and 1,000 approved assignments (Amazon Mechanical Turk, n.d.-a). However, 

we feel that this recommendation is likely too restrictive for most academic research. Although most of the work that is 

conducted on MTurk consists of short, repetitive tasks, we suggest requiring no greater than a 97 percent HIT approval 

rate to allow for Workers who have up to a three percent rejection rate to participate. Since MTurk assigns a 100 percent 

approval rating to Workers who have completed fewer than 100 HITs, we also suggest that researchers set a minimum 

of 100 approved HITs to ensure that the approval rating is effective, and that Workers have some familiarity with MTurk 

before participating. 

Jia et al. (2017) suggest increasing the sample size to lower the proportion of professional MTurk Workers. While 

limiting the number of professional Workers might be desirable for certain studies, simply collecting more responses is 

unlikely to significantly alter the proportion because the entire population of Workers has an equal opportunity to 

participate. Instead, if professional Workers are undesirable, we suggest that researchers consider filtering out 

professionals by limiting the number of HITs approved to fewer than 10,000 with an additional HIT qualification. 

However, researchers should be aware that using more restrictive reputation thresholds could potentially skew the 

participant pool and relying solely upon the HIT acceptance rate and the number of accepted HITs to qualify Workers is 

not advisable. Also, “professional” survey takers are not unique to MTurk as they are just as likely to participate in 
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studies facilitated by other online panel providers, which prevents researchers from having any control over the 

qualification process. 

4.4. Generate Unique Completion Codes 

Researchers usually prefer to use other platforms that are better suited for collecting such data in conjunction with 

MTurk. For example, researchers can include a link in the HIT to their study instrument on Qualtrics or SurveyMonkey. 

Therefore, researchers need to be able to determine that a Worker claiming to have completed the HIT has in fact 

submitted the data collected in another platform. The most common method is to use a completion code to approve 

external hits (Mason & Suri, 2012), such as a combination of letters and/or numbers (e.g. “U8L4F9”) at the conclusion 

of the study that the Worker can enter into MTurk after participating. Some researchers might elect to use a static code 

for each batch to avoid verifying unique codes for each submission, although this increases the risk of participants sharing 

the code with other Workers to obtain payment for a HIT they did not complete. As we discuss in Best Practice 6.1, the 

verification process for unique completion codes can be quite painless if the researcher is comfortable with basic 

functions in Microsoft Excel. Therefore, we recommend the use of unique completion codes that are randomly generated 

and assigned to each participant. This can be achieved in Qualtrics through the built-in random number generator. For 

example, a random, six-digit, numeric completion code can be generated and stored in an Embedded Data field (Figure 

4),  and then be displayed in the survey using Piped Text (Figure 5). Though this approach would allow for the possibility 

of the same completion code to be assigned to multiple respondents, randomization and a large range of values makes 

this an unlikely event. 

Figure 4. Creating the Completion Code as an Embedded Data Field in Qualtrics 

Figure 5. Using Piped Text to Display the Completion Code in Qualtrics 

4.5. Test Your HITs 

Poorly implemented HITs are likely to result in Workers leaving negative ratings and comments, so we highly 

recommend that researchers carefully test each aspect of the HIT, including any Qualification Tests, to confirm that they 

perform as intended. The first step is to test the HIT in the MTurk Developer Sandbox. Although the sandbox mimics 

the functionality of the production environment, HITs published in the Developer Sandbox are not visible to Workers. 

This allows Requesters to experiment with new uses for MTurk and to test the behavior of their HITs prior to publishing. 

Once the researcher is satisfied with a HIT in the Developer Sandbox, we recommend that it be published in the 

production environment using a pilot batch with a limited number of assignments to verify that nothing was overlooked 

during the sandbox testing. Researchers should treat the pilot batch as if it were a real collection to test their rubric and 

approval methods. Work from the pilot batch should be classified according to the Work Approval Matrix, but we 

encourage Requesters to approve most work unless the Worker clearly did not put forth a reasonable effort. 

Researchers should also include additional qualitative questions to identify any issues related to the technical behavior 

of their HIT and to gauge Worker opinion on the planned compensation relative to completion time. For example, 

replicating questions from the Turkopitcon review form would provide insight on how Workers are likely to view the 

HIT and allow researchers to mitigate these concerns prior to full data collection. Once the HIT is ready for full data 
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collection, researchers should reduce the number of HIT-related questions as much as possible and include an open-

response text box for Workers to relay any issues. 

5. Best Practices During Collection

The nature of conducting studies using MTurk requires researchers to pay close attention to their HITs while they are 

in progress. As will be discussed in section six, more detailed data analysis should always be conducted to determine 

whether responses are suitable to be included in the study. In this section, we focus on the suggested practices to follow 

while collecting data on MTurk to ensure timely decisions can be made with respect to evaluating work on MTurk. The 

best practices we recommend in this section are summarized in Table 6. 

Number Best Practice How to Implement 

5.1 Capture MTurk Worker ID 
• Use JavaScript to capture and store participant

Worker IDs with individual responses

5.2 Repeat Study-Specific Qualification Questions 
• Compare responses from qualification test to

verify participant consistency and honesty

5.3 Collect Data in Batches 
• Collect data in multiple batches

• Resolve issues before full data collection

5.4 Promptly Remove Disqualified Participants 

• Include attention check, manipulation check,

and ability questions

• Automatically disqualify Workers who exceed

acceptable quality control thresholds

• Automatically categorize Workers who are

removed from the study

5.5 Exclude Repeat and Ineligible Participants 

• Prevent repeat responses by excluding Worker

IDs collected from prior attempts

• Employ multiple approaches when excluding

Workers

Table 6. Best Practices During Collection 

5.1. Capture MTurk Worker ID 

One of the most useful pieces of information that a researcher can gather while conducting studies on MTurk is the 

Worker ID, which is a randomly generated string of thirteen or fourteen alphanumeric characters assigned by Amazon 

to each MTurk Worker account. The Worker ID can be used to establish MTurk Qualifications, ensure the same 

respondent is participating in longitudinal studies, or to exclude past participants from repeated attempts. However, the 

Worker ID is not associated with data collected outside of MTurk without following additional steps. Some researchers 

might simply ask Workers to enter their Worker ID in a field within the study. However, this approach is likely to result 

in errors, especially if the Worker mistakes certain characters for numbers and vice versa. Even copying and pasting 

Worker IDs might result in extra spaces being appended to the end. Both issues can complicate the work approval process 

when an exact match for a given Worker ID cannot be found, potentially resulting in erroneously rejecting otherwise 

acceptable work. Therefore, we recommend that researchers use a script to append the Worker ID to the end of the URL 

for the study to automatically associate it with the participant’s response on the researcher’s platform of choice. A 

straightforward set of instructions for obtaining the Worker ID from MTurk and collecting it in Qualtrics was provided 

by Peer, Paolacci, Chandler, & Mueller (2012) and was later extended by Shawn Zamechek (2015). Since the Worker 

ID serves multiple purposes not available with other methods, we highly recommend that researchers take advantage of 

this feature and make certain that the Worker ID is accurately captured for each response. We have provided a modified 

version of this code as a supplementary file. The result of the code can be seen in Appendix C. 

5.2. Repeat Study-Specific Qualification Questions 

If MTurk Qualifications have been established prior to collecting study data, we suggest that the full-scale research 

instrument repeat the same qualification questions to verify their accuracy. By comparing the answers for each 

respondent from the qualification survey and the full-scale data collection, researchers can identify questionable 

participants. This helps eliminate any Workers who might have answered dishonestly or simply guessed the desired 
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target population characteristics during the qualification survey, as well as Workers who might have experienced a 

change in their demographic status (e.g., changed jobs) between answering the qualification survey and participating in 

the full study. 

5.3. Collect Data in Batches 

Although the number of eligible participants available on MTurk is dependent upon the target population, we advise 

researchers to collect data in multiple batches due to the speed in which HITs are attempted by Workers. Issues that 

might arise during data collection are difficult to address while hundreds of attempts are in progress. Limiting the size 

of each batch can avoid this problem (Mason & Suri, 2012). This is especially important for researchers with limited 

budgets since it would be unethical to withhold payment due to any unforeseen issues with the data collection. Therefore, 

starting with a smaller test batch is encouraged before collecting larger sample sizes. 

Another reason for employing batch collection is the short time between the initiation and conclusion of a HIT. Even 

though it is possible to collect thousands of responses quickly, there could be unknown issues with generalizability due 

to temporal bias if a sample is collected over such a narrow timeframe (Casey, Chandler, Levine, Proctor, & Strolovitch, 

2018). Thus, it would be advisable to collect data in smaller batches that are initiated at different times and days of the 

week. One should also keep the target population in mind when developing a collection schedule. For example, unless 

tax season is particularly relevant to a study’s purpose, it would not be wise to seek participation from tax preparers in 

the United States during late March or early April because it is unlikely for the true target population to be active and 

fully represented on MTurk while experiencing an increased workload. 

Lastly, Amazon changed the cost structure of MTurk in 2015. Previously, the fee charged to Requesters for conducting 

work on MTurk was 10 percent of the amount paid to Workers, including bonus payments. However, the fee is now 20 

percent for HITs with up to nine assignments and 40 percent for HITs with 10 or more assignments. While the additional 

work involved in manually managing nine assignment HITs would be considerable, conducting small batches is a way 

for Requesters to reduce the cost of conducting a study on MTurk. Fortunately, the batch creation process can be 

automated using various programming languages, such as Python (“MTurk Documentation for Boto 3”, n.d.) and R 

(Carter, 2017), which helps reduce cost and avoid temporal bias. 

5.4. Promptly Remove Disqualified Participants 

Common techniques for ensuring data quality in academic research include the use of attention check questions 

(ACQs), reverse-coded questions, and manipulation check questions (MCQs) (Cheung et al., 2017; Jia et al., 2017; 

Lowry et al., 2016; Oppenheimer, Meyvis, & Davidenko, 2009). Mason & Suri (2012) also encourage including 

questions that discourage spammers and bots. Lastly, researchers should avoid questions with answers that are easily 

found online (Goodman et al., 2013). 

Establishing criteria and methods for assessing data quality should be done for all research studies, but the use of 

MTurk introduces unique issues that researchers must consider when identifying and removing disqualified participants. 

Jia et al. (2017) recommend removing participants who fail quality controls after data collection. Some have even 

suggested that allowing participants to have multiple attempts to complete the study would improve data quality (Cheung 

et al., 2017). Sprouse (2011) suggests increasing the desired sample size by 15 percent to account for rejection rates. 

However, we disagree with these approaches. First, we argue that researchers should set a priori thresholds for what is 

an unacceptable number of failed checks for a given study. Second, researchers should use survey logic to promptly 

remove participants who have exceeded quality control thresholds and prevent them from reattempting the study. Third, 

if you’re following Best Practice 5.3, you can simply collect additional batches until the desired sample size has been 

obtained. Following these recommendations will prevent the final sample from including data from inattentive 

participants and avoid researchers unnecessarily paying for additional attempts that should not be kept in the final sample. 

Jia et al. (2017) also note that some IRBs might feel that disqualifying and removing participants violates their right 

to withdraw from a study without penalty or loss of benefit. However, we argue that being disqualified from a study for 

inattentiveness is not equivalent to voluntarily withdrawing from a study. Further, we feel that this situation can be 

avoided by including a “withdraw from the study” option on all screens of the study instrument. This allows participants 

to voluntarily remove themselves from the study and be directed to a short survey on why they wish to withdraw. Not 

only does this allow researchers to be notified of any concerns as they occur, but it also allows for such instances to be 

handled on a case-by-case basis. Researchers can still provide reasonable compensation to Workers through the bonus 

payment feature on MTurk. 
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Failing to compensate and/or communicate with disqualified participants is likely to result in reduced reputation 

ratings for the Requester. Therefore, consistent with the earlier recommendation to clearly communicate with Workers, 

we encourage researchers to include notification messages if a Worker’s participation is terminated for any reason. This 

should be incorporated into the study design to inform Workers of the general reason for their removal (i.e., “Your 

responses failed to meet our quality control standards”). If the notification message is too specific (i.e., “You answered 

attention check questions incorrectly”), the disqualified Worker can compromise the study’s integrity by warning 

potential participants. Informing these participants that they will still receive compensation for the time spent working 

on the HIT should also be included in disqualification messages when appropriate. 

Manually determining the proper payment for these participants is more laborious because their work will not appear 

on MTurk since they are unable to submit a completion code. However, if additional embedded data fields are associated 

with each notification message, researchers can quickly analyze the entire data set to identify those who were disqualified 

for various reasons. In Qualtrics, this can be achieved using branch logic in the Survey Flow. A standard field can be set 

using the “Flag Response As Screened-Out” option in a custom end of survey message. However, we recommend using 

a custom embedded data field so that multiple values can be stored that indicate when and why the participant was 

removed from the study, as shown in Figure 6. In this example, the first if statement will be triggered if a participant 

incorrectly answers one of three attention check questions. The participant will be immediately removed from the study, 

provided a custom end of survey message, and the REMOVED embedded data field associated with their response will 

show ATTN. The second if statement will be triggered if the participant elects to voluntarily withdraw from the study. 

Before receiving this custom end of survey message, they will be redirected to additional questions to solicit feedback 

on why they elected to withdraw. Incorporating automated categorization logic simplifies the review process, especially 

when hundreds of responses are being collected. Simply reviewing the REMOVED embedded data field allows 

researchers to quickly pay these participants by uploading a batch of Worker IDs to be awarded a bonus payment. Even 

though the data from disqualified participants is likely unusable, clear communication and reasonable compensation is 

still greatly appreciated by Workers and helps encourage future participation in behavioral research. 

Figure 6. Example of Flow Logic in Qualtrics for Removing Participants 

5.5. Exclude Repeat and Ineligible Participants 

If researchers use MTurk to recruit their sample but collect the study data outside of MTurk, a Worker can accept a 

HIT, partially complete the study instrument, and then attempt to restart using the same link. Even if researchers inform 
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Workers that subsequent attempts to complete the HIT will not be accepted, a determined few will likely still try to 

participate. Since MTurk can only prevent Workers from accepting a HIT more than once, the researcher might find that 

they have multiple attempts from the same Worker ID despite only seeing them accept the HIT once. Most online data 

collection platforms attempt to prevent “ballot stuffing” (e.g., restricting participation to one response per IP address) 

(Lowry et al., 2016). However, these measures are not always reliable, especially if participants employ proxies, use 

multiple Internet browsers, or clear browser cookies. 

Also, if researchers follow the suggestion to collect data in batches, previous participants must be prevented from 

participating in the same study again (Cheung et al., 2017). Workers who failed attention or manipulation checks in a 

prior attempt should be excluded from future batches of the same HIT. Failing to remove inattentive participants or 

allowing multiple attempts would likely invalidate their responses due to priming. Since they have been previously 

exposed to the HIT, researchers are no longer able to capture their true and unbiased response. This issue is especially 

critical for those conducting experiments. Once a Worker has been exposed to a treatment, the study would suffer from 

poor experimental control if he or she is given an opportunity to participate in the study a second time. Paolacci et al. 

(2010) also recommend tracking participants to ensure independent responses when publishing multiple HITs for the 

same or related studies. Additional steps must be taken to ensure that each observation collected on MTurk is unique and 

unbiased. 

Researchers should employ multiple approaches when excluding Workers. First, the HIT should be limited to one 

attempt per Worker. Second, researchers should employ the method suggested by Peer et al. (2012) and use JavaScript 

to append the MTurk Worker ID to the link to the study instrument, which is incorporated into the code we provided in 

a supplementary file. Automatically checking a Worker ID against a list of previous participants is highly effective for 

excluding Workers when using Qualtrics. A similar approach can be adapted to other platforms using Unique Turker 

(http://uniqueturker.myleott.com). Lastly, researchers can completely block Workers from a HIT using MTurk’s web 

interface or command line tools (Cheung et al., 2017). 

6. Best Practices After Collection

The practices suggested in this section, summarized in Table 7, assist researchers in assessing the quality of the data 

collected. Researchers should perform the steps in best practices 6.1 and 6.2 immediately following the completion of 

each batch of data collected so that the work approval process can be completed in a timely manner. 

Number Best Practice How to Implement 

6.1 Promptly Review Submitted Work 

• Check for repeat attempts based on Worker ID

• Verify completion codes match each Worker ID

• Review completion times for outliers

• Evaluate and approve work using

predetermined rubric in accordance with

approval matrix

• Automate steps using MTurk Developer Tools

6.2 Backup and Secure Data 

• Backup all MTurk data and study responses

• Disassociate Worker IDs from responses after

work has been reviewed

6.3 Assess Overall Data Quality 

• Check reverse coded items

• Assess participant drop-out rates across

treatments of an online experiment

• Look for patterns in the responses

• Ensure data is representative of population

Table 7. Best Practices After Collection 

6.1. Promptly Review Submitted Work 

We suggest researchers actively monitor and review submissions as they are completed. This allows for speedy 

approval and rejection and ensures that poor work is not automatically approved once the time set for auto-approval has 

expired. Prompt approval of work is well received by the Worker community and will be reflected in the Turkopticon 

reviews for the Requester, further improving the researcher’s reputation. While more detailed data analysis should be 
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reserved until the full data collection has ended, we recommend the following steps be completed in sequential order 

following each batch. 

First, assuming that priming is a concern for the study, we recommend that researchers double check their study 

responses for duplicate Worker IDs. Again, best practices 5.5 and 6.1 will only prevent known Worker IDs from 

reattempting the study. Therefore, it is possible for Workers to accept a HIT and access the external instrument multiple 

times during the same batch. If multiples of the same Worker ID are present, we recommend rejecting all work associated 

with the Worker ID and flagging their responses to be removed from the final analysis. The prohibition of reattempts 

should be made clear in the study expectations (see Appendix A). 

Second, we recommend that researchers check the randomized completion codes to ensure that the correct Worker 

ID is associated with a single, complete response. Incorrect completion codes are grounds for rejection. Completion 

codes entered on MTurk can be quickly matched with the Worker IDs associated with each response using a spreadsheet 

application, like Microsoft Excel. There are multiple functions available in Excel to assist in completing this step, such 

as VLOOKUP, MATCH, or INDEX.  

Third, we recommend evaluating complete responses in accordance with the quality standards developed when 

following Best Practice 3.4. One of the most telling metrics for data quality, especially when collecting online data, is 

the completion time per observation (Lowry et al., 2016). If the study instrument is delivered using Qualtrics, timing 

questions can be embedded in each page to provide even more detail (Qualtrics, n.d.). Some respondents might be 

exceptionally quick readers, but the unsupervised nature of online sampling does allow for unrealistic completion times. 

The use of attention and manipulation check questions should catch a large majority of participants who are not reading 

carefully and fail to provide thoughtful responses, but a review of extreme outliers with unrealistic completion times is 

always a good practice. However, the decision to reject such data is far more challenging, especially if the participant 

successfully navigated through the attention and manipulation checks. In these select cases approving the work is 

probably best, but researchers might consider marking the observations as potential candidates for removal during the 

final data analysis. It would also be helpful to the research community, but certainly not expected, if researchers would 

take the time to message such Workers to encourage them to slow down when participating in future studies. 

Once the quality of each response has been categorized, researchers should follow the work approval matrix from 

Table 3 when deciding to accept work, issue bonus payments, and communicate with Workers. The execution of this 

step can be automated if researchers take advantage of the MTurk Developer Tools, as discussed in best practice 4.1. 

6.2. Backup and Secure Data 

Researchers should be aware that MTurk data will only be available for 120 days after collection. Because of this, we 

encourage researchers to immediately download and backup their qualification test data and batch results from MTurk. 

Researchers should also save a copy of their HIT properties and content for future reference or reuse and made available 

to reviewers upon request. If responses are collected using an external platform, such as Qualtrics, we advise creating a 

backup of that data as well. 

Although the collection of personally identifiable information on MTurk is prohibited by Amazon’s terms of service, 

we encourage researchers to treat the responses of their participants with the utmost care. While general demographic 

information about each Worker can be retained to qualify participants for future studies, there is no need to store the 

Worker ID with their individualized responses. Therefore, once researchers have completed their review of work and 

processed payments, it would be prudent to disassociate the Worker ID from their submission. Doing so protects 

participants should Amazon’s user data ever be breached, or the Worker ID is ever found to be identifiable, as was the 

case in the early days of MTurk (Lease et al., 2013). 

6.3. Assess Overall Data Quality 

While following the suggested best practices provided in this paper is likely to produce a higher level of data quality 

when using MTurk, no amount of vigilance can eliminate the need for additional analysis. The chances are that some of 

the accepted work, upon closer examination, will not be suitable for inclusion in the final analysis. Employing traditional 

statistical and experimental controls should not be overlooked (Kerlinger & Lee, 2000; Pedhazur & Schmelkin, 1991; 

Shadish et al., 2002). Researchers should still perform commonly accepted assessments for checking the quality of data 

(Lowry et al., 2016). For example, researchers should still check any reverse coded items and assess participant drop-

out rates across treatments of an online experiment (Rand, 2012). Researchers should also look for patterns in the answer 

choices that possibly indicate poor quality responses (Mason & Suri, 2012) and use known population demographics 

(e.g., census data) or other demographic information from prior research that draws from similar populations to make 
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sure that the data collected is representative of the target population (Cheung et al., 2017). Further, if a qualification 

survey was conducted to establish MTurk Qualifications, it would be wise to compare the demographics reported in both 

samples for each respondent to be sure consistent and reliable responses were obtained. This will help verify that the 

participant recruitment methods employed did, in fact, yield the desired sample. 

7. Discussion

Although MTurk can be a quick, convenient, and cost-effective, yet powerful data collection method for academic 

research, authors often receive negative feedback from reviewers and editors about the quality of such data. Additional 

scrutiny is warranted if proper measures were not taken to ensure data quality, although common criticisms often have 

nothing to do with the actual methods employed but rather with the use of MTurk in general. Therefore, we attempt to 

address these concerns in the following sections. 

7.1. Recommendations for Authors 

Authors should adopt as many of the suggested best practices as possible to improve the quality of data collected on 

MTurk. Although page limits often require authors to shorten or remove insightful explanations of the data collection 

procedures, we believe that providing this information is extremely valuable to assessing data quality and should, 

therefore, be included. Following the practices outlined in this paper would also allow authors to simply provide a citation 

to concisely communicate the data collection methods employed. However, authors are still encouraged to explain study-

specific criteria, such as qualification questions, to provide additional insight on the methods employed to sample the 

desired target population. 

7.2. Recommendations for Reviewers 

Regardless of the platform used, reviewers should require that authors disclose their data collection procedures to 

better assess data quality rather than making an assessment based solely upon the platform being used. In fact, we argue 

that the use of MTurk affords researchers greater control and understanding of the data collection process, especially 

when compared to paid online panel providers that promise to deliver samples of the desired populations yet fail to 

provide any real method of verification. Therefore, reviewers should carefully critique the methods used for participant 

recruitment, qualification, and compensation for all research. It should also be noted that, unlike MTurk, the amount paid 

to online research companies (e.g., Qualtrics and SurveyMonkey) for online panels is not directly paid to those who 

participate. Considering such a rate as participant compensation or gauging the perceived “quality” of data collected 

based upon such a figure is inaccurate. 

7.3. Recommendations for Editors 

Poor practices can certainly lead to poor data, but MTurk provides researchers far more control and insight into their 

sample than paying other firms to recruit participants for their study. Editors should be sure that any issues raised by 

reviewers pertaining to the use of MTurk are based upon the methods employed by the authors rather than MTurk in 

general. Encouraging reviewers to critique participant recruitment, qualification, and compensation, rather than simply 

disregarding MTurk as a research tool, will yield constructive feedback and improve the quality of all research. While 

we understand the difficulty of staying under page limitations, we encourage editors to request that a detailed description 

of the sampling methodology be reported for every study to improve the assessment of data quality for all published 

research. 

8. Conclusion

Although we only focused our paper on survey and experimental research, the wide range of research applications for 

MTurk is exciting. Regardless of how MTurk is used, researchers must make sure that proper measures are taken to 

maintain academic rigor. Researchers might find themselves overwhelmed with having total control of the subject 

recruitment and qualification process, so we have provided a practical tutorial to follow before, during, and after 

conducting research using MTurk. We discussed specific options and settings available in MTurk as well as included 

images, websites, and scripts so that researchers new to MTurk will be able to successfully create their own HITs. 

Following our recommended best practices should ease the burden of using MTurk and ultimately enhance the quality 

of data collected. We also provide arguments for the acceptance of MTurk as a quality research platform and discuss 

significant advantages of MTurk over existing online methods currently accepted. Finally, we argue that reviewers and 

editors of academic research must ensure that criticism of the data collection methods employed in any study is rooted 

in the procedures followed, not the platform itself. 
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Appendix A: Recommended Language for HIT Expectations 

In this appendix, we provide researchers with recommended language to use when communicating expectations to 

Workers in the HIT description on MTurk. Please note that the elements in brackets should be edited to fit the context 

of the study in question. Be sure to use high-level language to avoid priming participants. 

Expected Time 

Based upon average completion time from a pilot study, completing this HIT 

will take approximately [X] to [Y] minutes. The time allotted to complete this 

HIT is [Y x 2] minutes. 

Compensation 

The reward for accepted work is [Recommended minimum: $7.25 x 

completion time for the 75th percentile from pilot study/60 minutes] for 

this HIT. 

Importance 
This scientific study will impact [broadly stated research area]. Your attentive 

and honest responses are appreciated. 

Environment 
Prior to accepting this HIT, please ensure that you are in a distraction-free 

environment that is conducive to deep thought. 

Acceptance 
We will review work within [X] hours. Honest, attentive, and complete 

responses will be accepted. 

Rejection 

Your work will be rejected if it does not satisfy our quality standards. If your 

work is rejected, you will be compensated for your time through a bonus 

payment. 

Communication 

The researcher(s) may be contacted via email at any time. You will be 

provided with contact email addresses at the beginning of the study. However, 

please ensure that you use an email address that will not identify you and only 

refer to your work by providing your Mechanical Turk Worker ID. 

Affirmation 
By accepting this HIT, you affirm that you have read and understand the 

expectations of participating in this study. 

Table 8. Example HIT Expectations 
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Appendix B: Recommended Language for Study Instrument 

In this appendix, we provide researchers with recommended language to use on the study instrument. We recommend 

including Table 9 after your institution’s IRB human consent form. 

Contact 

Information 

If you have any questions or concerns about the study, you may contact the 

researchers via email. However, please ensure that you use an email address 

that will not identify you and only refer to your work by providing your 

Mechanical Turk Worker ID.  

[Researcher 1] [researcher1@example.edu] 

[Researcher 2] [researcher2@example.edu] 

Repeated 

Attempts 

Be sure that you only click on the study link once. If you experience technical 

issues, please contact us immediately before reattempting the study. 

Unauthorized repeat attempts will be rejected without compensation. 

Quality 

Controls 

Your work will be rejected if it does not satisfy our quality standards. If your 

work is rejected, you will still be compensated for your time through a bonus 

payment. Reattempts will be rejected without additional payment. 

Research 

Purposes 

The data collected for this study will be used for academic research purposes. 

We intend to publish the results of this study in academic outlets, such as 

conferences and journals. 

Anonymity 

Your anonymity is important to us. We have made every effort to avoid the 

collection of any personally identifiable information. Unless you have 

indicated that you would like to be considered for future studies, the use of 

your Worker ID is strictly for HIT approval and payment purposes. However, 

if you inadvertently disclose personally identifiable information, we promise 

not to disclose your identity to any third-party. 

Confidentiality 

The responses you provide while participating in this study will be kept 

strictly confidential. Data analysis will be reported in aggregate form. Written 

responses will be anonymized, with no reference to your Worker ID. 

Non-Disclosure 

The content of this study is confidential and should not be shared with other 

potential participants (forums, social media, etc.). Doing so will jeopardize 

the integrity of the research project. 

Feedback 

You will have an opportunity to provide feedback at the end of the study. 

Please report any questions, concerns, and/or difficulties experienced. Your 

feedback will help us ensure that we provide a positive experience for other 

Workers on MTurk. 

Affirmation 
By continuing, you affirm that you have read and understand the instructions 

for this study. 

Table 9. Example Study Overview 

We recommend including Table 10 as the last screen of the study instrument. 

Confidentiality 

Thank you for participating in our study! 

Remember, to preserve the integrity of the study, you may not share anything 

about the experiment with other potential participants (forums, social media, 

etc.). 

Completion Code 

To receive compensation, please ensure that you copy and paste the following 

six-digit survey code into the Human Intelligence Task for this study on 

Mechanical Turk. 

[Randomized Completion Code] 

Table 10. Example End of Survey Screen
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Appendix C: Code for HIT Expectations 

Peer, Paolacci, Chandler, & Mueller (2012) provided a script to append Worker IDs to the study URL that was later 

extended by Shawn Zamechek (2015). We build upon their work by incorporating our suggested HIT Expectations 

language from Table 8 into the code we provide as a supplementary file. Replacing the default code in the Design Layout 

with our code will create the HIT Expectations shown in Figure 7. 

Figure 7. HIT Instructions on MTurk When Using Provided Code 
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